Search results
Results from the WOW.Com Content Network
Eris (minor-planet designation: 136199 Eris) is the most massive and second-largest known dwarf planet in the Solar System. [22] It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit. For celestial objects in general, the orbital period is determined by a 360° revolution of one body around its primary, e.g. Earth around the Sun. Periods in astronomy are expressed in units of time, usually hours, days, or years.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Dwarf planet Eris, similar in size to its better-known cosmic cousin Pluto, has remained an enigma since being discovered in 2005 lurking in the solar system's far reaches. While Pluto was ...
All the solar planets more distant from the Sun than Earth are similar to Earth in that, since they experience many rotations per revolution around the Sun, there is only a small difference between the length of the sidereal day and that of the solar day – the ratio of the former to the latter never being less than Earth's ratio of 0.997.
The length of the day (LOD), which has increased over the long term of Earth's history due to tidal effects, is also subject to fluctuations on a shorter scale of time. Exact measurements of time by atomic clocks and satellite laser ranging have revealed that the LOD is subject to a number of different changes.
For premium support please call: 800-290-4726 more ways to reach us