Search results
Results from the WOW.Com Content Network
In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. [1] [2] Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers.
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
6174 is a 7-smooth number, i.e. none of its prime factors are greater than 7. 6174 can be written as the sum of the first three powers of 18: 18 3 + 18 2 + 18 1 = 5832 + 324 + 18 = 6174, and coincidentally, 6 + 1 + 7 + 4 = 18. The sum of squares of the prime factors of 6174 is a square: 2 2 + 3 2 + 3 2 + 7 2 + 7 2 + 7 2 = 4 + 9 + 9 + 49 + 49 ...
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
To recover the actual value, we can take the least common multiple of each : (,, …,). The least common multiple will be the order of the original integer with high probability. In practice, a single run of the quantum order-finding subroutine is in general enough if more advanced post-processing is used.
At the end of a long day, taking inventory of the fridge, cracking a cookbook open, or running out to the grocery store in order to figure out a dinner plan can seem overwhelming.
One method of producing a longer period is to sum the outputs of several LCGs of different periods having a large least common multiple; the Wichmann–Hill generator is an example of this form. (We would prefer them to be completely coprime, but a prime modulus implies an even period, so there must be a common factor of 2, at least.) This can ...
Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.