enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    [4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.

  3. Record linkage - Wikipedia

    en.wikipedia.org/wiki/Record_linkage

    Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).

  4. Wide and narrow data - Wikipedia

    en.wikipedia.org/wiki/Wide_and_narrow_data

    Many statistical and data processing systems have functions to convert between these two presentations, for instance the R programming language has several packages such as the tidyr package. The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow ...

  5. Extract, transform, load - Wikipedia

    en.wikipedia.org/wiki/Extract,_transform,_load

    Joining data from multiple sources (e.g., lookup, merge) and deduplicating the data; Aggregating (for example, rollup – summarizing multiple rows of data – total sales for each store, and for each region, etc.) Generating surrogate-key values; Transposing or pivoting (turning multiple columns into multiple rows or vice versa)

  6. Data wrangling - Wikipedia

    en.wikipedia.org/wiki/Data_wrangling

    The data transformations are typically applied to distinct entities (e.g. fields, rows, columns, data values, etc.) within a data set, and could include such actions as extractions, parsing, joining, standardizing, augmenting, cleansing, consolidating, and filtering to create desired wrangling outputs that can be leveraged downstream.

  7. Contingency table - Wikipedia

    en.wikipedia.org/wiki/Contingency_table

    The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.

  8. Join (SQL) - Wikipedia

    en.wikipedia.org/wiki/Join_(SQL)

    An inner join (or join) requires each row in the two joined tables to have matching column values, and is a commonly used join operation in applications but should not be assumed to be the best choice in all situations. Inner join creates a new result table by combining column values of two tables (A and B) based upon the join-predicate.

  9. Control flow - Wikipedia

    en.wikipedia.org/wiki/Control_flow

    The following simple example involves searching a two-dimensional table for a particular item. exitwhen found or missing; for I := 1 to N do for J := 1 to M do if table[I,J] = target then found; missing; exits found: print ("item is in table"); missing: print ("item is not in table"); endexit ;