Search results
Results from the WOW.Com Content Network
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
Here, we offer another useful Hermitian matrix using an abstract example. If a square matrix equals the product of a matrix with its conjugate transpose, that is, =, then is a Hermitian positive semi-definite matrix.
The complex conjugate of a complex number is written as ¯ or . The first notation, a vinculum, avoids confusion with the notation for the conjugate transpose of a matrix, which can be thought of as a generalization of the complex conjugate.
When defining a linear transformation, it can be the case that a change of basis can result in a simpler form of the same transformation. For example, the matrix representing a rotation in R 3 when the axis of rotation is not aligned with the coordinate axis can be complicated to compute.
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written
Two elements , are conjugate if there exists an element such that =, in which case is called a conjugate of and is called a conjugate of . In the case of the general linear group GL ( n ) {\displaystyle \operatorname {GL} (n)} of invertible matrices , the conjugacy relation is called matrix similarity .
A square matrix which is equal to its conjugate transpose, A = A *. Hessenberg matrix: An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix: A square matrix whose main diagonal comprises only zero elements. Integer matrix: A matrix whose entries are all integers ...
For example, if the matrix is orthogonal, then 1 or −1 is an eigenvalue. ... Since non-real complex roots come in conjugate pairs, there are an even number of them;