Search results
Results from the WOW.Com Content Network
Pseudomathematics, or mathematical crankery, is a mathematics-like activity that does not adhere to the framework of rigor of formal mathematical practice. Common areas of pseudomathematics are solutions of problems proved to be unsolvable or recognized as extremely hard by experts, as well as attempts to apply mathematics to non-quantifiable ...
In mathematics, pseudoanalytic functions are functions introduced by Lipman Bers (1950, 1951, 1953, 1956) that generalize analytic functions and satisfy a weakened form of the Cauchy–Riemann equations.
Since the dual of the pseudoscalar is the product of two "pseudo-quantities", the resulting tensor is a true tensor, and does not change sign upon an inversion of axes. The situation is similar to the situation for pseudovectors and antisymmetric tensors of order 2. The dual of a pseudovector is an antisymmetric tensor of order 2 (and vice versa).
This page was last edited on 4 November 2020, at 07:59 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This category theory -related article is a stub. You can help Wikipedia by expanding it.
An alternative to using mathematical pseudocode (involving set theory notation or matrix operations) for documentation of algorithms is to use a formal mathematical programming language that is a mix of non-ASCII mathematical notation and program control structures. Then the code can be parsed and interpreted by a machine.
In mathematics, a pseudogroup is a set of homeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation [dubious – discuss] of the concept of a group, originating however from the geometric approach of Sophus Lie [1] to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example).
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa [1] [2] in 1934.