Search results
Results from the WOW.Com Content Network
Due to the accelerating expansion of the universe, the individual clusters of gravitationally bound galaxies that make up galaxy filaments are moving away from each other at an accelerated rate; in the far future they will dissolve. [2] Galaxy filaments form the cosmic web and define the overall structure of the observable universe. [3] [4] [5]
This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres). This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension.
The Hercules–Corona Borealis Great Wall (HCB) [1] [5] or simply the Great Wall [6] is a galaxy filament that is the largest known structure in the observable universe, measuring approximately 10 billion light-years in length (the observable universe is about 93 billion light-years in diameter).
Regions of higher density collapsed more rapidly under gravity, eventually resulting in the large-scale, foam-like structure or "cosmic web" of voids and galaxy filaments seen today. Voids located in high-density environments are smaller than voids situated in low-density spaces of the universe. [3]
The matter condenses in large filaments and haloes which have an intricate web-like structure. These form galaxy groups, clusters and superclusters. While the simulations appear to agree broadly with observations, their interpretation is complicated by the understanding of how dense accumulations of dark matter spur galaxy formation.
The Great Wall (also called Coma Wall), sometimes specifically referred to as the CfA2 Great Wall, is an immense galaxy filament.It is one of the largest known superstructures in the observable universe.
The Sloan Great Wall (SGW) is a cosmic structure formed by a giant wall of galaxies (a galaxy filament). Its discovery was announced from Princeton University on October 20, 2003, by J. Richard Gott III , Mario Jurić , and their colleagues, based on data from the Sloan Digital Sky Survey .
An MeerKAT image of the Galactic Center showing a number of filaments Radio image of a number of parallel filaments in the Galactic Center; Sagittarius A*, the Milky Way's central black hole, is located in the bright region in the bottom right [1] [2] Nonthermal radio filaments from the 4'' resolution MeerKAT mosaic; oriented vertically for space; scales given assuming a distance of 8.2 kpc