Search results
Results from the WOW.Com Content Network
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .
In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic. It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition. [1]
For propositional logic, it may be shown that semantic consequence and derivability are equivalent to one-another. That is, propositional logic is sound ( ⊢ {\displaystyle \vdash } implies ⊨ {\displaystyle \models } ) and complete ( ⊨ {\displaystyle \models } implies ⊢ {\displaystyle \vdash } ) [ 5 ]
In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.
In propositional logic, disjunction elimination [1] [2] (sometimes named proof by cases, case analysis, or or elimination) is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof.
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...