Search results
Results from the WOW.Com Content Network
When a non-competitive inhibitor is added the Vmax is changed, while the Km remains unchanged. According to the Lineweaver-Burk plot the Vmax is reduced during the addition of a non-competitive inhibitor, which is shown in the plot by a change in both the slope and y-intercept when a non-competitive inhibitor is added. [8]
Thus, in the presence of the inhibitor, the enzyme's effective K m and V max become (α/α')K m and (1/α')V max, respectively. However, the modified Michaelis-Menten equation assumes that binding of the inhibitor to the enzyme has reached equilibrium, which may be a very slow process for inhibitors with sub-nanomolar dissociation constants.
On the other hand, the V max will decrease relative to an uninhibited enzyme. On a Lineweaver-Burk plot, the presence of a noncompetitive inhibitor is illustrated by a change in the y-intercept, defined as 1/V max. The x-intercept, defined as −1/K M, will remain the same. In competitive inhibition, the inhibitor will bind to an enzyme at the ...
An example of a Lineweaver–Burk plot of 1/v against 1/a In biochemistry , the Lineweaver–Burk plot (or double reciprocal plot ) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics , described by Hans Lineweaver and Dean Burk in 1934.
If the inhibitor is different from the substrate, then competitive inhibition will increase Km while Vmax remains the same, and non-competitive will decrease Vmax while Km remains the same. However, under substrate inhibiting effects where two of the same substrate molecules bind to the active sites and inhibitory sites, the reaction rate will ...
Uncompetitive inhibition (which Laidler and Bunting preferred to call anti-competitive inhibition, [1] but this term has not been widely adopted) is a type of inhibition in which the apparent values of the Michaelis–Menten parameters and are decreased in the same proportion.
For premium support please call: 800-290-4726 more ways to reach us
a possible mechanism of non-competitive inhibition, a kind of mixed inhibition.. Mixed inhibition is a type of enzyme inhibition in which the inhibitor may bind to the enzyme whether or not the enzyme has already bound the substrate but has a greater affinity for one state or the other. [1]