Search results
Results from the WOW.Com Content Network
The U.S. Standard Atmosphere model starts with many of the same assumptions as the isothermal-barotropic model, including ideal gas behavior, and constant molecular weight, but it differs by defining a more realistic temperature function, consisting of eight data points connected by straight lines; i.e. regions of constant temperature gradient.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The mathematical similarities between the expressions for shear viscocity, thermal conductivity and diffusion coefficient of the ideal (dilute) gas is not a coincidence; It is a direct result of the Onsager reciprocal relations (i.e. the detailed balance of the reversible dynamics of the particles), when applied to the convection (matter flow ...
Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea-level density (about 1.2 kg/m 3 ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 ...
Gas dynamics is the overview of the average value in the distance between two molecules of gas that has collided with out ignoring the structure in which the molecules are contained. The field requires a great amount of knowledge and practical use in the ideas of the kinetic theory of gases, and it links the kinetic theory of gases with the ...
Forces that cause atmospheric motion include the pressure gradient force, gravity, and viscous friction. Together, they create the forces that accelerate our atmosphere. The pressure gradient force causes an acceleration forcing air from regions of high pressure to regions of low pressure. Mathematically, this can be written as:
Using the ideal gas law and the hydrostatic equilibrium equation, gives ¯, which has the solution = (()), where is the gas mass density at the midplane of the disk at a distance r from the center of the star, and is the disk scale height with = ¯ (/ ) (/ ) (/) (¯ / ) , with the solar mass, the astronomical unit, and the atomic mass unit.
Hele-Shaw flow is defined as flow taking place between two parallel flat plates separated by a narrow gap satisfying certain conditions, named after Henry Selby Hele-Shaw, who studied the problem in 1898. [1] [2] Various problems in fluid mechanics can be approximated to Hele-Shaw flows and thus the research of these flows is of importance ...