enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section.

  3. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter : = Where is the cross-sectional area of the pipe and is its wetted perimeter. It is defined such that it reduces to a circular diameter of D for circular pipes.

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In the case of a non-circular cross-section of a pipe, the same formula can be used to find the entry length with a little modification. A new parameter “hydraulic diameter” relates the flow in non-circular pipe to that of circular pipe flow. This is valid as long as the cross-sectional area shape is not too exaggerated.

  5. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The wetted perimeter is the perimeter of the cross sectional area that is "wet". [1] The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering, environmental engineering, hydrology, geomorphology, and heat transfer ...

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.

  7. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Airfoils use the square of the chord length as the reference area; since airfoil chords are usually defined with a length of 1, the reference area is also 1. Aircraft use the wing area (or rotor-blade area) as the reference area, which makes for an easy comparison to lift. Airships and bodies of revolution use the volumetric coefficient of drag ...

  8. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    For air with a heat capacity ratio =, then =; other gases have in the range 1.09 (e.g. butane) to 1.67 (monatomic gases), so the critical pressure ratio varies in the range < / <, which means that, depending on the gas, choked flow usually occurs when the downstream static pressure drops to below 0.487 to 0.587 times the absolute pressure in ...

  9. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    At cross section 1, the mean flow velocity is equal to v 1, the pressure is p 1 and the cross-sectional area is A 1. The corresponding flow quantities at cross section 2 – well behind the expansion (and regions of separated flow) – are v 2, p 2 and A 2, respectively.