Search results
Results from the WOW.Com Content Network
Cathodic arc deposition or Arc-PVD is a physical vapor deposition technique in which an electric arc is used to vaporize material from a cathode target. The vaporized material then condenses on a substrate, forming a thin film. The technique can be used to deposit metallic, ceramic, and composite films.
Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam. [1] Ion beam deposition setup with mass separator. An ion beam deposition apparatus typically consists of an ion source, ion optics, and the deposition target. Optionally a mass analyzer can be incorporated. [2]
Cathodic stripping voltammetry is a voltammetric method for quantitative determination of specific ionic species. [6] It is similar to the trace analysis method anodic stripping voltammetry, except that for the plating step, the potential is held at an oxidizing potential, and the oxidized species are stripped from the electrode by sweeping the potential negatively.
In certain applications, such as the deposition of ceramic materials, voltages above 3–4V cannot be applied in aqueous EPD if it is necessary to avoid the electrolysis of water. However, higher application voltages may be desirable in order to achieve higher coating thicknesses or to increase the rate of deposition.
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Vacuum deposition is a group of processes used to deposit layers of material atom-by-atom or molecule-by-molecule on a solid surface. These processes operate at pressures well below atmospheric pressure (i.e., vacuum ).
The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm/min at relatively low substrate temperatures, with very high material utilization efficiency. The ...
In conventional anodizing, this layer of oxide is grown on the surface of the metal by the application of electrical potential, while the part is immersed in an acidic electrolyte. In plasma electrolytic oxidation, higher potentials are applied. For example, in the plasma electrolytic oxidation of aluminum, at least 200 V must be applied.