Ads
related to: draw k4 4 graph paper
Search results
Results from the WOW.Com Content Network
A complete bipartite graph of K 4,7 showing that Turán's brick factory problem with 4 storage sites (yellow spots) and 7 kilns (blue spots) requires 18 crossings (red dots) For any k, K 1,k is called a star. [2] All complete bipartite graphs which are trees are stars. The graph K 1,3 is called a claw, and is used to define the claw-free graphs ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Kneser graph O 4 = K(7, 3) The Kneser graph K(n, 1) is the complete graph on n vertices. The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices. The Kneser graph K(2n − 1, n − 1) is the odd graph O n; in particular O 3 = K(5, 2) is the Petersen graph (see top right figure). The Kneser graph O 4 = K ...
The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...
In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized (analogously to Wagner's theorem for planar graphs) by the two forbidden minors K 4 and K 2,3 , or by their Colin de Verdière graph invariants .
An outerplanar graph is a graph that has a planar embedding in which all vertices belong to the outer face of the embedding. For such a graph, placing the vertices in the same order along the spine as they appear in the outer face provides a one-page book embedding of the given graph.
A complete multipartite graph is a graph that is complete k-partite for some k. [3] The Turán graphs are the special case of complete multipartite graphs in which each two independent sets differ in size by at most one vertex.
The Petersen graph is a core: every homomorphism of the Petersen graph to itself is an automorphism. [8] As shown in the figures, the drawings of the Petersen graph may exhibit five-way or three-way symmetry, but it is not possible to draw the Petersen graph in the plane in such a way that the drawing exhibits the full symmetry group of the graph.
Ads
related to: draw k4 4 graph paper