enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    A planar graph is said to be convex if all of its faces (including the outer face) are convex polygons. Not all planar graphs have a convex embedding (e.g. the complete bipartite graph K 2,4). A sufficient condition that a graph can be drawn convexly is that it is a subdivision of a 3-vertex-connected planar graph.

  3. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    K 1 through K 4 are all planar graphs. However, every planar drawing of a complete graph with five or more vertices must contain a crossing, and the nonplanar complete graph K 5 plays a key role in the characterizations of planar graphs: by Kuratowski's theorem, a graph is planar if and only if it contains neither K 5 nor the complete bipartite ...

  4. Outerplanar graph - Wikipedia

    en.wikipedia.org/wiki/Outerplanar_graph

    A graph is k-outerplanar if it has a k-outerplanar embedding. [16] An outer-1-planar graph, analogously to 1-planar graphs can be drawn in a disk, with the vertices on the boundary of the disk, and with at most one crossing per edge. Every maximal outerplanar graph is a chordal graph.

  5. k-outerplanar graph - Wikipedia

    en.wikipedia.org/wiki/K-Outerplanar_graph

    An outerplanar graph (or 1-outerplanar graph) has all of its vertices on the unbounded (outside) face of the graph. A 2-outerplanar graph is a planar graph with the property that, when the vertices on the unbounded face are removed, the remaining vertices all lie on the newly formed unbounded face. And so on.

  6. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph of K 4,7 showing that Turán's brick factory problem with 4 storage sites (yellow spots) and 7 kilns (blue spots) requires 18 crossings (red dots) For any k, K 1,k is called a star. [2] All complete bipartite graphs which are trees are stars. The graph K 1,3 is called a claw, and is used to define the claw-free graphs ...

  7. Kuratowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Kuratowski's_theorem

    Kuratowski's theorem states that a finite graph is planar if it is not possible to subdivide the edges of or ,, and then possibly add additional edges and vertices, to form a graph isomorphic to . Equivalently, a finite graph is planar if and only if it does not contain a subgraph that is homeomorphic to K 5 {\displaystyle K_{5}} or K 3 , 3 ...

  8. Wagner's theorem - Wikipedia

    en.wikipedia.org/wiki/Wagner's_theorem

    Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. Wagner published both theorems in 1937, [1] subsequent to the 1930 publication of Kuratowski's theorem, [2] according to which a graph is planar if and only if it does not contain as a subgraph a subdivision of one of the same two forbidden ...

  9. Thickness (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Thickness_(graph_theory)

    In graph theory, the thickness of a graph G is the minimum number of planar graphs into which the edges of G can be partitioned. That is, if there exists a collection of k planar graphs, all having the same set of vertices, such that the union of these planar graphs is G, then the thickness of G is at most k.