enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  3. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming is particularly simple when Q is positive definite and there are only equality constraints; specifically, the solution process is linear. By using Lagrange multipliers and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem

  4. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. [1] It is a popular algorithm for parameter estimation in machine learning.

  5. Sequential linear-quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_linear...

    In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.

  6. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.

  7. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Examples of simplices include a line segment in one-dimensional space, a triangle in two-dimensional space, a tetrahedron in three-dimensional space, and so forth. The method approximates a local optimum of a problem with n variables when the objective function varies smoothly and is unimodal .

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation. [8] Notable proprietary implementations include: Mathematica includes quasi-Newton solvers. [9] The NAG Library contains several routines [10] for minimizing or maximizing a function [11] which use quasi-Newton algorithms.

  9. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.