Search results
Results from the WOW.Com Content Network
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to oftentimes lead to sympatric speciation through a phyletic gradualism mode of evolution. Disruptive selection can be caused or influenced by ...
The uncommon disruptive selection also acts during transition periods when the current mode is sub-optimal, but alters the trait in more than one direction. In particular, if the trait is quantitative and univariate then both higher and lower trait levels are favoured. Disruptive selection can be a precursor to speciation. [57]
It is the selection against the heterozygote, causing disruptive selection [2] and divergent genotypes. Underdominance exists in situations where the heterozygotic genotype is inferior in fitness to either the dominant or recessive homozygotic genotype.
Stabilizing selection (not to be confused with negative or purifying selection [1] [2]) is a type of natural selection in which the population mean stabilizes on a particular non-extreme trait value. This is thought to be the most common mechanism of action for natural selection because most traits do not appear to change drastically over time ...
Disruptive selection favors both extreme phenotypes while the moderate phenotype will be selected against. The frequency of both extreme alleles will increase while the frequency of the moderate allele will decrease, differing from the trend in directional selection in which only one extreme allele is favored.
Apostatic selection is a form of negative frequency-dependent selection. It describes the survival of individual prey animals that are different (through mutation ) from their species in a way that makes it more likely for them to be ignored by their predators .
Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum. Disruptive selection is inferred to often times lead to sympatric speciation through a phyletic gradualism mode of evolution.
In natural selection, negative selection [1] or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations.