Search results
Results from the WOW.Com Content Network
The Kruskal-Wallis test can be implemented in many programming tools and languages. We list here only the open source free software packages: In Python's SciPy package, the function scipy.stats.kruskal can return the test result and p-value. [18] R base-package has an implement of this test using kruskal.test. [19]
When there is an a priori ordering, the Jonckheere test has more statistical power than the Kruskal–Wallis test. The test was developed by Aimable Robert Jonckheere , who was a psychologist and statistician at University College London .
If data are ordinal, a non-parametric alternative to this test should be used such as Kruskal–Wallis one-way analysis of variance. If the variances are not known to be equal, a generalization of 2-sample Welch's t-test can be used. [2]
The main statistical tests available are Independent and Paired t-tests, Wilcoxon signed ranks, Mann–Whitney U, Pearson's chi squared, Kruskal Wallis H, one-way ANOVA, Spearman's R, and Pearson's R. Nested tables can be produced with row and column percentages, totals, standard deviation, mean, median, lower and upper quartiles, and sum.
William Henry Kruskal (/ ˈ k r ʌ s k əl /; October 10, 1919 – April 21, 2005) was an American mathematician and statistician. He is best known for having formulated the Kruskal–Wallis one-way analysis of variance (together with W. Allen Wallis ), a widely used nonparametric statistical method .
Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution. Kuiper's test: tests whether a sample is drawn from a given distribution, sensitive to cyclic variations such as day of the week. Logrank test: compares survival distributions of two right-skewed, censored samples.
As President Donald Trump moved last month to free the people who stormed the U.S. Capitol, his newly appointed top prosecutor in Washington put his name on a request that a judge drop charges ...
The Kruskal-Wallis test is designed to detect stochastic dominance, so the null hypothesis is the absence of stochastic dominance. Using multi-modal distributions you can quickly generate counter examples to the claim "the null hypothesis of the Kruskal-Wallis is equal distribution of the samples".