enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...

  3. Trihexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Trihexagonal_tiling

    It contains four sets of parallel planes of points and lines, each plane being a two dimensional kagome lattice. A second expression in three dimensions has parallel layers of two dimensional lattices and is called an orthorhombic-kagome lattice. [8] The trihexagonal prismatic honeycomb represents its edges and vertices.

  4. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...

  5. Triply periodic minimal surface - Wikipedia

    en.wikipedia.org/wiki/Triply_periodic_minimal...

    In differential geometry, a triply periodic minimal surface (TPMS) is a minimal surface in that is invariant under a rank-3 lattice of translations. These surfaces have the symmetries of a crystallographic group. Numerous examples are known with cubic, tetragonal, rhombohedral, and orthorhombic symmetries.

  6. Rectangular lattice - Wikipedia

    en.wikipedia.org/wiki/Rectangular_lattice

    The rectangular lattice and rhombic lattice (or centered rectangular lattice) constitute two of the five two-dimensional Bravais lattice types. [1] The symmetry categories of these lattices are wallpaper groups pmm and cmm respectively. The conventional translation vectors of the rectangular lattices form an angle of 90° and are of unequal ...

  7. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.

  8. Jordan–Wigner transformation - Wikipedia

    en.wikipedia.org/wiki/Jordan–Wigner_transformation

    The Jordan–Wigner transformation is a transformation that maps spin operators onto fermionic creation and annihilation operators.It was proposed by Pascual Jordan and Eugene Wigner [1] for one-dimensional lattice models, but now two-dimensional analogues of the transformation have also been created.

  9. Integer lattice - Wikipedia

    en.wikipedia.org/wiki/Integer_lattice

    where the symmetric group S n acts on (Z 2) n by permutation (this is a classic example of a wreath product). For the square lattice, this is the group of the square, or the dihedral group of order 8; for the three-dimensional cubic lattice, we get the group of the cube, or octahedral group, of order 48.