Search results
Results from the WOW.Com Content Network
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The direct sum of abelian groups is a prototypical example of a direct sum. Given two such groups ( A , ∘ ) {\displaystyle (A,\circ )} and ( B , ∙ ) , {\displaystyle (B,\bullet ),} their direct sum A ⊕ B {\displaystyle A\oplus B} is the same as their direct product .
In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted . Direct sums play an important role in the classification of abelian groups: according to the fundamental theorem of finite abelian groups , every finite abelian group can be expressed as the direct sum of cyclic groups .
The fundamental theorem of finite abelian groups states that every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order; it is also known as the basis theorem for finite abelian groups. Moreover, automorphism groups of cyclic groups are examples of abelian groups. [13]
The primary decomposition formulation states that every finitely generated abelian group G is isomorphic to a direct sum of primary cyclic groups and infinite cyclic groups. A primary cyclic group is one whose order is a power of a prime. That is, every finitely generated abelian group is isomorphic to a group of the form
For example, the coproduct in the category of groups, called the free product, is quite complicated. On the other hand, in the category of abelian groups (and equally for vector spaces), the coproduct, called the direct sum, consists of the elements of the direct product which have only finitely many nonzero terms. (It therefore coincides ...
Direct sums are commutative and associative (up to isomorphism), meaning that it doesn't matter in which order one forms the direct sum. The abelian group of R-linear homomorphisms from the direct sum to some left R-module L is naturally isomorphic to the direct product of the abelian groups of R-linear homomorphisms from M i to L: (,) (,).
Here, Z/pZ denotes the cyclic group of order p (or equivalently the integers mod p), and the superscript notation means the n-fold direct product of groups. [2] In general, a (possibly infinite) elementary abelian p-group is a direct sum of cyclic groups of order p. [4] (Note that in the finite case the direct product and direct sum coincide ...