Search results
Results from the WOW.Com Content Network
It used real-life data from Walmart and was conducted on Kaggle's Platform. It offered substantial prizes totaling US$100,000 to the winners. The data was provided by Walmart and consisted of around 42,000 hierarchical daily time series, starting at the level of SKUs and ending with the total demand of some large geographical area.
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Resources, events, agents (REA) is a model of how an accounting system can be re-engineered for the computer age.REA was originally proposed in 1982 by William E. McCarthy as a generalized accounting model, [1] and contained the concepts of resources, events and agents (McCarthy 1982).
Data covering the nonlinear relationships observed in a servo-amplifier circuit. Levels of various components as a function of other components are given. 167 Text Regression 1993 [160] [161] K. Ullrich UJIIndoorLoc-Mag Dataset Indoor localization database to test indoor positioning systems. Data is magnetic field based. Train and test splits ...
The Global Energy Forecasting Competition (GEFCom) is a competition conducted by a team led by Dr. Tao Hong that invites submissions around the world for forecasting energy demand. [1] GEFCom was first held in 2012 on Kaggle , [ 2 ] and the second GEFCom was held in 2014 on CrowdANALYTIX.
Accurate data collection is essential to many business processes, [6] [7] [8] to the enforcement of many government regulations, [9] and to maintaining the integrity of scientific research. [10] Data collection systems are an end-product of software development. Identifying and categorizing software or a software sub-system as having aspects of ...
DVC is a free and open-source, platform-agnostic version system for data, machine learning models, and experiments. [1] It is designed to make ML models shareable, experiments reproducible, [2] and to track versions of models, data, and pipelines. [3] [4] [5] DVC works on top of Git repositories [6] and cloud storage. [7]
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).