Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
Momentum investing is a system of buying stocks or other securities that have had high returns over the past three-to-twelve months, and selling those that have had ...
The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...
Momentum is a vector quantity, so impulse is also a vector quantity: =. [1] Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: =,
Here, J is the total electronic angular momentum, L is the orbital angular momentum, and S is the spin angular momentum. Because = / for electrons, one often sees this formula written with 3/4 in place of (+). The quantities g L and g S are other g-factors of an electron.
While position and momentum are associated with a single particle, time is a system property: it has no operator needed for the Robertson–Schrödinger relation. [1] The mathematical treatment of stable and unstable quantum systems differ. [45] These factors combine to make energy–time uncertainty principles controversial.
The momentum theorem states that the integrated force exerted at the boundaries of the control volume (a surface integral), is equal to the integrated time rate of change (material derivative) of the momentum of fluid parcels passing through the interior of the control volume. For a steady flow, this can be expressed in the form of the net ...
In finance, momentum is the empirically observed tendency for rising asset prices or securities return to rise further, and falling prices to keep falling. For instance, it was shown that stocks with strong past performance continue to outperform stocks with poor past performance in the next period with an average excess return of about 1% per month.