Search results
Results from the WOW.Com Content Network
A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).
Decomposition method is a generic term for solutions of various problems and design of algorithms in which the basic idea is to decompose the problem into subproblems. The term may specifically refer to: Decomposition method (constraint satisfaction) in constraint satisfaction
Decomposition: This is a version of Schur decomposition where and only contain real numbers. One can always write A = V S V T {\displaystyle A=VSV^{\mathsf {T}}} where V is a real orthogonal matrix , V T {\displaystyle V^{\mathsf {T}}} is the transpose of V , and S is a block upper triangular matrix called the real Schur form .
It also means that if there are several vanishing singular values, any linear combination of the corresponding right-singular vectors is a valid solution. Analogously to the definition of a (right) null vector, a non-zero satisfying = with denoting the conjugate transpose of , is called a left null vector of .
By contrast, there are alternative forms for writing equations. For example, the equation of a line may be written as a linear equation in point-slope and slope-intercept form. Convex polyhedra can be put into canonical form such that: All faces are flat, All edges are tangent to the unit sphere, and; The centroid of the polyhedron is at the ...
In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.
A set of nested modules, of which the modular decomposition is an example, can be used to guide the recursive solution of many combinatorial problems on graphs, such as recognizing and transitively orienting comparability graphs, recognizing and finding permutation representations of permutation graphs, recognizing whether a graph is a cograph ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.