enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ yx and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x . The main term on the left is Φ (1); which turns out to be the dominant terms of the prime number theorem , and the main correction is the sum over non-trivial zeros of the zeta function.

  3. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.

  4. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The first such distribution found is π(N) ~ ⁠ N / log(N) ⁠, where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N).

  5. Meissel–Lehmer algorithm - Wikipedia

    en.wikipedia.org/wiki/Meissel–Lehmer_algorithm

    where ⌊ x ⌋ is the floor function, which denotes the greatest integer less than or equal to x and the p i run over all primes ≤ √ x. [1] [2] Since the evaluation of this sum formula becomes more and more complex and confusing for large x, Meissel tried to simplify the counting of the numbers in the Sieve of Eratosthenes. He and Lehmer ...

  6. Siegel–Walfisz theorem - Wikipedia

    en.wikipedia.org/wiki/Siegel–Walfisz_theorem

    The constant C N is not effectively computable because Siegel's theorem is ineffective.. From the theorem we can deduce the following bound regarding the prime number theorem for arithmetic progressions: If, for (a, q) = 1, by (;,) we denote the number of primes less than or equal to x which are congruent to a mod q, then

  7. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  8. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Since the Diophantus identity implies that the product of two integers each of which can be written as the sum of two squares is itself expressible as the sum of two squares, by applying Fermat's theorem to the prime factorization of any positive integer n, we see that if all the prime factors of n congruent to 3 modulo 4 occur to an even ...

  9. Elliott–Halberstam conjecture - Wikipedia

    en.wikipedia.org/wiki/Elliott–Halberstam...

    Let (), the prime-counting function, denote the number of primes less than or equal to . If q {\displaystyle q} is a positive integer and a {\displaystyle a} is coprime to q {\displaystyle q} , we let π ( x ; q , a ) {\displaystyle \pi (x;q,a)} denote the number of primes less than or equal to x {\displaystyle x} which are equal to a ...