Search results
Results from the WOW.Com Content Network
For this reason, the baud rate value will often be lower than the gross bit rate. Example of use and misuse of "baud rate": It is correct to write "the baud rate of my COM port is 9,600" if we mean that the bit rate is 9,600 bit/s, since there is one bit per symbol in this case. It is not correct to write "the baud rate of Ethernet is 100 ...
In the simple version above, the signal and noise are fully uncorrelated, in which case + is the total power of the received signal and noise together. A generalization of the above equation for the case where the additive noise is not white (or that the / is not constant with frequency over the bandwidth) is obtained by treating the channel as many narrow, independent Gaussian ...
The ratio is not necessarily an integer; in 4B3T coding, the bit rate is 4 / 3 of the baud rate. (A typical basic rate interface with a 160 kbit/s raw data rate operates at 120 kBd.) Codes with many symbols, and thus a bit rate higher than the symbol rate, are most useful on channels such as telephone lines with a limited bandwidth but ...
In the context of, for example, the sampling theorem and Nyquist sampling rate, bandwidth typically refers to baseband bandwidth. In the context of Nyquist symbol rate or Shannon-Hartley channel capacity for communication systems it refers to passband bandwidth. The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its ...
Spectral bandwidth in Hertz; Symbol rate in baud, symbols/s; Digital bandwidth in bit/s measures: gross bit rate (signalling rate), net bit rate (information rate), channel capacity, and maximum throughput; Channel utilization; Spectral efficiency; Signal-to-noise ratio in decibel measures: signal-to-interference ratio, E b /N 0
The theorem also leads to a formula for perfectly reconstructing the original continuous-time function from the samples. Perfect reconstruction may still be possible when the sample-rate criterion is not satisfied, provided other constraints on the signal are known (see § Sampling of non-baseband signals below and compressed sensing). In some ...
Bandwidth commonly measured in bits/second is the maximum rate that information can be transferred Throughput is the actual rate that information is transferred Latency the delay between the sender and the receiver decoding it, this is mainly a function of the signals travel time, and processing time at any nodes the information traverses
The maximum user signaling rate, synonymous to gross bit rate or data signaling rate, is the maximum rate, in bits per second, at which binary information can be transferred in a given direction between users over the communications system facilities dedicated to a particular information transfer transaction, under conditions of continuous transmission and no overhead information.