Search results
Results from the WOW.Com Content Network
A similar definition applies to space curves and curves in n-dimensional Euclidean space. The point where the tangent line and the curve meet or intersect is called the point of tangency. The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point.
In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...
The non-vertical case has equation y = mx + n, where m and are real numbers. All three types of asymptotes can be present at the same time in specific examples. Unlike asymptotes for curves that are graphs of functions, a general curve may have more than two non-vertical asymptotes, and may cross its vertical asymptotes more than once.
Several examples of adapted frames have already been considered. The first vector T of the Frenet–Serret frame (T, N, B) is tangent to a curve, and all three vectors are mutually orthonormal. Similarly, the Darboux frame on a surface is an orthonormal frame whose first two vectors are tangent to the surface.
Tangential speech or tangentiality is a communication disorder in which the train of thought of the speaker wanders and shows a lack of focus, never returning to the initial topic of the conversation. [1]
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
Subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the ordinate (AP), tangent (TP), subtangent (TA), normal (PN), and subnormal (AN). The angle φ is the angle of inclination of the tangent line or the tangential angle.
For example, if M is a submanifold of N and φ is the inclusion, then a vector field along φ is just a section of the tangent bundle of N along M; in particular, a vector field on M defines such a section via the inclusion of TM inside TN. This idea generalizes to arbitrary smooth maps. Suppose that X is a vector field on M, i.e., a section of TM.