Search results
Results from the WOW.Com Content Network
At each point, the moving line is always tangent to the curve. Its slope is the derivative; green marks positive derivative, red marks negative derivative and black marks zero derivative. The point (x,y) = (0,1) where the tangent intersects the curve, is not a max, or a min, but is a point of inflection. (Note: the figure contains the incorrect ...
In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity. [1] [2] The word asymptote is derived from the Greek ἀσύμπτωτος (asumptōtos) which means "not falling together", from ἀ priv. + σύν "together" + πτωτ-ός "fallen". [3]
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
Circumferential (or azimuthal) – following around a curve or circumference of an object. For instance: the pattern of cells in Taylor–Couette flow varies along the azimuth of the experiment. Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction.
This page was last edited on 2 December 2024, at 16:34 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The learning curve may refer to a specific task or a body of knowledge. Hermann Ebbinghaus first described the learning curve in 1885 in the field of the psychology of learning, although the name did not come into use until 1903. [4] [5] In 1936 Theodore Paul Wright described the effect of learning on production costs in the aircraft industry. [6]
For example, if M is a submanifold of N and φ is the inclusion, then a vector field along φ is just a section of the tangent bundle of N along M; in particular, a vector field on M defines such a section via the inclusion of TM inside TN. This idea generalizes to arbitrary smooth maps. Suppose that X is a vector field on M, i.e., a section of TM.
An extremely special case of this is the following: if a differentiable function from reals to the reals has nonzero derivative at a zero of the function, then the zero is simple, i.e. it the graph is transverse to the x-axis at that zero; a zero derivative would mean a horizontal tangent to the curve, which would agree with the tangent space ...