enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA condensation - Wikipedia

    en.wikipedia.org/wiki/DNA_condensation

    Usually, DNA condensation is defined as "the collapse of extended DNA chains into compact, orderly particles containing only one or a few molecules". [3] This definition applies to many situations in vitro and is also close to the definition of DNA condensation in bacteria as "adoption of relatively concentrated, compact state occupying a ...

  3. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    Accessing and repairing the damaged cell of DNA, the genome condenses into chromatin and repairing it through modifying the histone residues. Through altering the chromatin structure, histones residues are adding chemical groups namely phosphate, acetyl and one or more methyl groups and these control the expressions of gene building by proteins ...

  4. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.

  5. Bacterial genome - Wikipedia

    en.wikipedia.org/wiki/Bacterial_genome

    Log-log plot of the total number of annotated proteins in genomes submitted to GenBank as a function of genome size. Based on data from NCBI genome reports.. Bacteria possess a compact genome architecture distinct from eukaryotes in two important ways: bacteria show a strong correlation between genome size and number of functional genes in a genome, and those genes are structured into operons.

  6. Eukaryotic chromosome structure - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_chromosome...

    This is extremely important because the way that DNA folds up in chromosome structures is linked to the way DNA is used. Scientists have been able to develop the 3D structures of chromosomes in a single cell. The scientists used hundreds of measurements of where different parts of the DNA get close to one another to help create this model.

  7. Microbial genetics - Wikipedia

    en.wikipedia.org/wiki/Microbial_Genetics

    Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism.

  8. Chromatin remodeling - Wikipedia

    en.wikipedia.org/wiki/Chromatin_remodeling

    The level of nucleosomal packaging can have profound consequences on all DNA-mediated processes including gene regulation. Euchromatin (loose or open chromatin) structure is permissible for transcription whereas heterochromatin (tight or closed chromatin) is more compact and refractory to factors that need to gain access to the DNA template.

  9. Gene cassette - Wikipedia

    en.wikipedia.org/wiki/Gene_cassette

    It can be transferred from one DNA sequence (usually on a vector) to another by 'cutting' the fragment out using restriction enzymes and 'pasting' it back into the new context. The vectors containing the gene of interest typically also carry an antibiotic resistance gene called a selectable marker to easily identify cells that have successfully ...