enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    The first-order energy shift is not well defined, since there is no unique way to choose a basis of eigenstates for the unperturbed system. The various eigenstates for a given energy will perturb with different energies, or may well possess no continuous family of perturbations at all.

  3. Isotopic shift - Wikipedia

    en.wikipedia.org/wiki/Isotopic_shift

    Using perturbation theory, the first-order energy shift can be calculated as = >, which requires the knowledge of accurate many-electron wave function. Due to the 1 / M N {\displaystyle 1/M_{N}} term in the expression, the specific mass shift also decrease as 1 / M N 2 {\displaystyle 1/M_{N}^{2}} as mass of nucleus increase, same as normal mass ...

  4. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    Fine and hyperfine structure in hydrogen (not to scale). This section presents a relatively simple and quantitative description of the spin–orbit interaction for an electron bound to a hydrogen-like atom, up to first order in perturbation theory, using some semiclassical electrodynamics and non-relativistic quantum mechanics.

  5. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    This equation is known as the Breit–Rabi formula and is useful for systems with one valence electron in an (= /) level. [ 9 ] [ 10 ] Note that index F {\displaystyle F} in Δ E F = I ± 1 / 2 {\displaystyle \Delta E_{F=I\pm 1/2}} should be considered not as total angular momentum of the atom but as asymptotic total angular momentum .

  6. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    He derived equations for the line intensities which were a decided improvement over Kramers's results obtained by the old quantum theory. While the first-order-perturbation (linear) Stark effect in hydrogen is in agreement with both the old Bohr–Sommerfeld model and the quantum-mechanical theory of the atom, higher-order corrections are not. [9]

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  8. Isomeric shift - Wikipedia

    en.wikipedia.org/wiki/Isomeric_shift

    The isomeric shift on atomic spectral lines is the energy or frequency shift in atomic spectra, which occurs when one replaces one nuclear isomer by another. The effect was predicted by Richard M. Weiner [ 2 ] in 1956, whose calculations showed that it should be measurable by atomic (optical) spectroscopy (see also [ 3 ] ).

  9. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.