Search results
Results from the WOW.Com Content Network
Stress–strain curve for brittle materials compared to ductile materials. Some common characteristics among the stress–strain curves can be distinguished with various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
Stress and strain can be applied via torsional or axial analyzers. Torsional analyzers are mainly used for liquids or melts but can also be implemented for some solid samples since the force is applied in a twisting motion. The instrument can do creep-recovery, stress–relaxation, and stress–strain experiments.
The strain energy of cyclopropane and cyclobutane are 27.5 and 26.3 kcal mol −1, respectively. [1] Cyclopentane experiences much less strain, mainly due to torsional strain from eclipsed hydrogens: its preferred conformations interconvert by a process called pseudorotation. [4]: 14 Ring strain can be considerably higher in bicyclic systems.
The interaction between the two flagpole hydrogens, in particular, generates steric strain. Torsional strain also exists between the C2–C3 and C5–C6 bonds (carbon number 1 is one of the two on a mirror plane), which are eclipsed — that is, these two bonds are parallel one to the other across a mirror plane. Because of this strain, the ...
Thus, a point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is ...
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
Van der Waals strain is strain resulting from Van der Waals repulsion when two substituents in a molecule approach each other with a distance less than the sum of their Van der Waals radii. Van der Waals strain is also called Van der Waals repulsion and is related to steric hindrance . [ 1 ]
The relation between mechanical stress, strain, and the strain rate can be quite complicated, although a linear approximation may be adequate in practice if the quantities are sufficiently small. Stress that exceeds certain strength limits of the material will result in permanent deformation (such as plastic flow , fracture , cavitation ) or ...