Search results
Results from the WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
The Euler line of a triangle is a line passing through its circumcenter, centroid, and orthocenter, among other points. The incenter generally does not lie on the Euler line; [16] it is on the Euler line only for isosceles triangles, [17] for which the Euler line coincides with the symmetry axis of the triangle and contains all triangle centers.
A spidron is a plane figure consisting of an alternating sequence of equilateral and isosceles (30°, 30°, 120°) triangles. Within the figure, one side of a regular triangle coincides with one of the sides of an isosceles triangle, while another side coincides with the hypotenuse of another, smaller isosceles triangle.
An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. [1] Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered ...
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A kite and its dual isosceles trapezoid. Kites and isosceles trapezoids are dual to each other, meaning that there is a correspondence between them that reverses the dimension of their parts, taking vertices to sides and sides to vertices. From any kite, the inscribed circle is tangent to its four sides at the four vertices of an isosceles ...