Search results
Results from the WOW.Com Content Network
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
Vinyl alcohol, also called ethenol (IUPAC name; not ethanol) or ethylenol, is the simplest enol. With the formula C H 2 CHOH, it is a labile compound that converts to acetaldehyde immediately upon isolation near room temperature. [1] It is not a practical precursor to any compound.
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol. [1]
Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula CH 3 CH 2 OH.It is an alcohol, with its formula also written as C 2 H 5 OH, C 2 H 6 O or EtOH, where Et stands for ethyl.
The temperature of the reaction influences the molecular weight of alcohol growth. Temperatures in the range of 60-120°C form higher molecular weight trialkylaluminium while higher temperatures (e.g., 120-150 °C) cause thermal displacement reactions that afford α-olefin chains. Above 150 °C, dimerization of the α-olefins occurs.
Ethene and oxygen are passed co-currently in a reaction tower at about 130 °C and 400 kPa. [27] The catalyst is an aqueous solution of PdCl 2 and CuCl 2 . The acetaldehyde is purified by extractive distillation followed by fractional distillation .
Ethylene oxide reacts with water to produce ethylene glycol according to the chemical equation. C 2 H 4 O + H 2 O → HO−CH 2 CH 2 −OH. This reaction can be catalyzed by either acids or bases, or can occur at neutral pH under elevated temperatures. The highest yields of ethylene glycol occur at acidic or neutral pH with a large excess of water.