Search results
Results from the WOW.Com Content Network
Operations between graphs include evaluating the direction of a subsumption relationship between two graphs, if any, and computing graph unification. The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a ...
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
Graph theory has close links to group theory. This truncated tetrahedron graph is related to the alternating group A 4. Graph theory, the study of graphs and networks, is often considered part of combinatorics, but has grown large enough and distinct enough, with its own kind of problems, to be regarded as a subject in its own right. [14]
This behavior is what produces the linear relationship when logarithms are taken of both () and , and the straight-line on the log–log plot is often called the signature of a power law. With real data, such straightness is a necessary, but not sufficient, condition for the data following a power-law relation.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula: [1] = + = + = ().
When restricted to graphs with maximum degree 3, it can be solved in time O(1.0836 n). [10] For many classes of graphs, a maximum weight independent set may be found in polynomial time. Famous examples are claw-free graphs, [11] P 5-free graphs [12] and perfect graphs. [13] For chordal graphs, a maximum weight independent set can be found in ...
The first scatter plot (top left) appears to be a simple linear relationship, corresponding to two correlated variables, where y could be modelled as gaussian with mean linearly dependent on x. For the second graph (top right), while a relationship between the two variables is obvious, it is not linear, and the Pearson correlation coefficient ...
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...