Search results
Results from the WOW.Com Content Network
PET imaging with 18F-FDG takes advantage of the fact that the brain is normally a rapid user of glucose. Standard 18F-FDG PET of the brain measures regional glucose use and can be used in neuropathological diagnosis. Example: Brain pathologies such as Alzheimer's disease greatly decrease brain metabolism of both glucose and oxygen in tandem ...
Positron emission tomography (PET) [1] is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption.
Functional magnetic resonance imaging data. Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions.
For example, PET scans have shown that when subjects, seated in a room, imagine they are at their front door starting to walk either to the left or right, activation begins in the visual association cortex, the parietal cortex, and the prefrontal cortex—all higher cognitive processing centers of the brain. [26]
The CT scan was introduced in the 1970s and quickly became one of the most widely used methods of imaging. A CT scan can be performed in under a second and produce rapid results for clinicians, with its ease of use leading to an increase in CT scans performed in the United States from 3 million in 1980 to 62 million in 2007.
Positron emission tomography–computed tomography (better known as PET-CT or PET/CT) is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed (co-registered) image.
An example of an fMRI scan. Since hypofrontality is a condition that alters blood flow and brain glucose metabolism levels, fMRIs or PET scans are used to diagnose hypofrontality. The decrease in blood flow can be best diagnosed with an fMRI, HMPOASPECT, or H2O-PET studies; the decrease in glucose levels can be diagnosed best with 18F-FDG PET ...
PET scans show developmental abnormality in the medial part of the left temporal lobe, and the limbic, and frontal systems. PET scans show that thought disorders stem from increased blood flow in the frontal and temporal regions while delusions and hallucinations were associated with reduced flow in the cingulate, left frontal, and temporal ...