Search results
Results from the WOW.Com Content Network
While leaks from a refrigerated liquid container are initially heavier than air due to the increased density of the cold gas, the gas at ambient temperature is lighter than air. Gas pipelines distribute large amounts of natural gas, of which methane is the principal component.
LNG carrier A liquefied natural gas ship at Świnoujście LNG terminal in Poland. Liquefied natural gas (LNG) is natural gas (predominantly methane, CH 4, with some mixture of ethane, C 2 H 6) that has been cooled down to liquid form for ease and safety of non-pressurized storage or transport.
LPG is composed mainly of propane and butane, while natural gas is composed of the lighter methane and ethane. LPG, vaporised and at atmospheric pressure, has a higher calorific value (46 MJ/m 3 equivalent to 12.8 kWh/m 3) than natural gas (methane) (38 MJ/m 3 equivalent to 10.6 kWh/m 3), which means that LPG cannot simply be substituted for ...
Natural gas burning on a gas stove Burning of natural gas coming out of the ground. Natural gas (also called fossil gas, methane gas, or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane (95%) [1] in addition to various smaller amounts of other higher alkanes.
Liquid properties Std enthalpy change of formation, Δ f H o liquid? kJ/mol Standard molar entropy, S o liquid? J/(mol K) Heat capacity, c p? J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas: −74.6 kJ/mol [8] Standard molar entropy, S o gas: 186.3 J/(mol K) [8] Enthalpy of combustion Δ c H o: −802 kJ/mol [9] Heat ...
Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling; a few, such as carbon dioxide, require pressurization as well. Liquefaction is used for analyzing the fundamental properties of gas molecules (intermolecular forces), or for the storage of gases, for example: LPG, and in refrigeration and air conditioning.
In terms of density, m = ρV, where ρ is the volumetric mass density, V is the volume occupied by the mass. This energy can be released by the processes of nuclear fission (~ 0.1%), nuclear fusion (~ 1%), or the annihilation of some or all of the matter in the volume V by matter– antimatter collisions (100%).
These can accurately describe the properties of dense gases, and gases with internal degrees of freedom, because they include the volume of the particles as well as contributions from intermolecular and intramolecular forces as well as quantized molecular rotations, quantum rotational-vibrational symmetry effects, and electronic excitation. [31]