Search results
Results from the WOW.Com Content Network
The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices ...
Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...
The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.
Nullity (linear algebra), the dimension of the kernel of a mathematical operator or null space of a matrix; Nullity (graph theory), the nullity of the adjacency matrix of a graph; Nullity, the difference between the size and rank of a subset in a matroid; Nullity, a concept in transreal arithmetic denoted by Φ, or similarly in wheel theory ...
The nullity of A is given by n − r where r is the rank of the adjacency matrix. This nullity equals the multiplicity of the eigenvalue 0 in the spectrum of the adjacency matrix. See Cvetkovič and Gutman (1972), Cheng and Liu (2007), and Gutman and Borovićanin (2011). In the matroid theory the nullity of the graph is the nullity of the ...
Equivalently, the rank of a graph is the rank of the oriented incidence matrix associated with the graph. [2] Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti ...
In mathematics, a Sylvester domain, named after James Joseph Sylvester by Dicks & Sontag (1978), is a ring in which Sylvester's law of nullity holds. This means that if A is an m by n matrix, and B is an n by s matrix over R, then ρ(AB) ≥ ρ(A) + ρ(B) – n. where ρ is the inner rank of a matrix.
In linear algebra, a nilpotent matrix is a square matrix N such that = for some positive integer.The smallest such is called the index of , [1] sometimes the degree of .. More generally, a nilpotent transformation is a linear transformation of a vector space such that = for some positive integer (and thus, = for all ).