Search results
Results from the WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
Sequence 2 is then free to hybridize with sequence 3 to form the 2–3 structure, which then prevents the formation of the 3–4 termination hairpin, which is why the 2–3 structure is called an anti-termination hairpin. In the presence of the 2–3 structure, RNA polymerase is free to continue transcribing the operon.
This also removes the need for an RNA primer to initiate RNA synthesis, as is the case in DNA replication. The non -template (sense) strand of DNA is called the coding strand , because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine).
Abortive initiation is a normal process of transcription and occurs both in vitro and in vivo. [2] After each nucleotide-addition step in initial transcription, RNA polymerase, stochastically, can proceed on the pathway toward promoter escape (productive initiation) or can release the RNA product and revert to the RNA polymerase-promoter open complex (abortive initiation).
Transfer-messenger RNA (abbreviated tmRNA, also known as 10Sa RNA and by its genetic name SsrA) is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex ( tmRNP ) together with Small Protein B ( SmpB ), Elongation Factor Tu ( EF-Tu ), and ribosomal protein S1.
In bacteria, the same enzyme catalyzes the synthesis of mRNA and non-coding RNA (ncRNA). RNAP is a large molecule. The core enzyme has five subunits (~400 kDa ): [ 26 ]
There are also a number of RNA-dependent RNA polymerases that use RNA as their template for synthesis of a new strand of RNA. For instance, a number of RNA viruses (such as poliovirus) use this type of enzyme to replicate their genetic material. [58] Also, RNA-dependent RNA polymerase is part of the RNA interference pathway in many organisms. [59]
A Rho factor acts on an RNA substrate. Rho's key function is its helicase activity, for which energy is provided by an RNA-dependent ATP hydrolysis. The initial binding site for Rho is an extended (~70 nucleotides, sometimes 80–100 nucleotides) single-stranded region, rich in cytosine and poor in guanine, called the rho utilisation site (rut), in the RNA being synthesised, upstream of the ...