enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The quadratic excess E ( p) is the number of quadratic residues on the range (0, p /2) minus the number in the range ( p /2, p) (sequence A178153 in the OEIS ). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  3. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue. Euler's ...

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Quadratic residue: An integer a is a quadratic residue modulo m, if there exists an integer x such that x 2 ≡ a (mod m). Euler's criterion asserts that, if p is an odd prime, and a is not a multiple of p, then a is a quadratic residue modulo p if and only if a (p−1)/2 ≡ 1 (mod p).

  5. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    Since the only residues (mod 5) are ±1, we see that 5 is a quadratic residue modulo every prime which is a residue modulo 5. −5 is in rows 3, 7, 23, 29, 41, 43, and 47 but not in rows 11, 13, 17, 19, 31, or 37.

  6. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    Only 0 ≤ k < n are shown, since due to rule (2) below any other k can be reduced modulo n. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if k is a quadratic residue modulo a coprime n, then (⁠ k / n ⁠) = 1, but not all entries with a Jacobi symbol of 1 (see the ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  8. Quadratic residuosity problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residuosity_problem

    The quadratic residuosity problem ( QRP [1]) in computational number theory is to decide, given integers and , whether is a quadratic residue modulo or not. Here for two unknown primes and , and is among the numbers which are not obviously quadratic non-residues (see below). The problem was first described by Gauss in his Disquisitiones ...

  9. Reciprocity law - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_law

    Reciprocity law. In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod .