enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    The quadratic excess E ( p) is the number of quadratic residues on the range (0, p /2) minus the number in the range ( p /2, p) (sequence A178153 in the OEIS ). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p − r.

  3. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can find quadratic residues or verify them using the above formula. To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Quadratic residue: An integer a is a quadratic residue modulo m, if there exists an integer x such that x 2 ≡ a (mod m). Euler's criterion asserts that, if p is an odd prime, and a is not a multiple of p, then a is a quadratic residue modulo p if and only if a (p−1)/2 ≡ 1 (mod p).

  5. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    If (⁠ a / n ⁠) = 1 then a may or may not be a quadratic residue modulo n. This is because for a to be a quadratic residue modulo n, it has to be a quadratic residue modulo every prime factor of n. However, the Jacobi symbol equals one if, for example, a is a non-residue modulo exactly two of the prime factors of n.

  6. Quadratic residuosity problem - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residuosity_problem

    The quadratic residuosity problem ( QRP [1]) in computational number theory is to decide, given integers and , whether is a quadratic residue modulo or not. Here for two unknown primes and , and is among the numbers which are not obviously quadratic non-residues (see below). The problem was first described by Gauss in his Disquisitiones ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  8. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic ), the factorial satisfies. exactly when n is a prime number.

  9. Quartic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quartic_reciprocity

    Gauss proved that −1 is a biquadratic residue if p ≡ 1 (mod 8) and a quadratic, but not biquadratic, residue, when p ≡ 5 (mod 8). [14] 2 is a quadratic residue mod p if and only if p ≡ ±1 (mod 8). Since p is also ≡ 1 (mod 4), this means p ≡ 1 (mod 8). Every such prime is the sum of a square and twice a square. [15]