enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    Knuth's up-arrow notation. In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1] In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation ...

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = ⁡ or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.

  6. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations: where the coefficients are the same as those in the binomial theorem.

  7. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula. which using factorial notation can be compactly expressed as.

  8. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler's continued fraction formula. In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued ...

  9. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    Fourth power. In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “ tesseracted ”, “ hypercubed ...