Search results
Results from the WOW.Com Content Network
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data.It was implemented by Tim Peters in 2002 for use in the Python programming language.
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Sorted arrays are the most space-efficient data structure with the best locality of reference for sequentially stored data. [citation needed]Elements within a sorted array are found using a binary search, in O(log n); thus sorted arrays are suited for cases when one needs to be able to look up elements quickly, e.g. as a set or multiset data structure.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)). During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array. The simplest worst case input is an array sorted in reverse order.
C++'s Standard Template Library provides the multimap container for the sorted multimap using a self-balancing binary search tree, [1] and SGI's STL extension provides the hash_multimap container, which implements a multimap using a hash table. [2] As of C++11, the Standard Template Library provides the unordered_multimap for the unordered ...
The shuffle sort [6] is a variant of bucket sort that begins by removing the first 1/8 of the n items to be sorted, sorts them recursively, and puts them in an array. This creates n /8 "buckets" to which the remaining 7/8 of the items are distributed.
In the bingo sort variant, items are sorted by repeatedly looking through the remaining items to find the greatest value and moving all items with that value to their final location. [2] Like counting sort , this is an efficient variant if there are many duplicate values: selection sort does one pass through the remaining items for each item ...