enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  3. Drill pipe - Wikipedia

    en.wikipedia.org/wiki/Drill_pipe

    Drill pipe is most often considered premium class, which is 80% remaining body wall (RBW). After inspection determines that the RBW is below 80%, the pipe is considered to be Class 2 or "yellow band" pipe. Eventually the drill pipe will be graded as scrap and marked with a red band. Drill pipe is a portion of the overall drill string.

  4. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle. Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic ...

  5. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    Euler's theorem: = | | = In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  6. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  7. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.

  8. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...

  9. Truncation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Truncation_(geometry)

    Types of truncation on a square, {4}, showing red original edges, and new truncated edges in cyan. A uniform truncated square is a regular octagon, t{4}={8}. A complete truncated square becomes a new square, with a diagonal orientation. Vertices are sequenced around counterclockwise, 1-4, with truncated pairs of vertices as a and b.