Search results
Results from the WOW.Com Content Network
In method 1, a slow pre-computation (such as the Remez algorithm) can be used to obtain an optimal (per application requirements) filter design. Method 2 will work in more general cases, e.g. where the ratio of sample rates is not rational, or two real-time streams must be accommodated, or the sample rates are time-varying.
Example of plotting samples of a frequency distribution in the unit "bins", which are integer values. A scale factor of 0.7812 converts a bin number into the corresponding physical unit (hertz). A common practice is to sample the frequency spectrum of the sampled data at frequency intervals of f s N , {\displaystyle {\tfrac {f_{s}}{N}},} for ...
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
In this example, f s is the sampling rate, and 0.5 cycle/sample × f s is the corresponding Nyquist frequency. The black dot plotted at 0.6 f s represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that ...
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.
For example, if compact disc audio at 44,100 samples/second is upsampled by a factor of 5/4, the resulting sample-rate is 55,125. Fig 1: Depiction of one dot product, resulting in one output sample (in green), for the case L=4, n=9, j=3. Three conceptual "inserted zeros" are depicted between each pair of input samples.
The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...
For example, the LCTs can shift the time–frequency distribution to any location, dilate it in the horizontal and vertical direction without changing its area on the plane, shear (or twist) it, and rotate it (Fractional Fourier transform). This powerful operation, LCT, make it more flexible to analyze and apply the time–frequency distributions.