enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    The first equation can be derived also from thermodynamical considerations and is equivalent to the first law of thermodynamics, assuming the expansion of the universe is an adiabatic process (which is implicitly assumed in the derivation of the Friedmann–Lemaître–Robertson–Walker metric). The second equation states that both the energy ...

  3. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    e. Alexander Friedmann. The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from ...

  4. Scale factor (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Scale_factor_(cosmology)

    Scale factor (cosmology) The expansion of the universe is parametrized by a dimensionless scale factor . Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, [1] this is a key parameter of the Friedmann equations. In the early stages of the Big Bang, most of the energy was in the form of radiation, and that ...

  5. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The model uses the Friedmann–Lemaître–Robertson–Walker metric, the Friedmann equations, and the cosmological equations of state to describe the observable universe from approximately 0.1 s to the present. [1]: 605

  6. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...

  7. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    The Friedmann equations are derived by inserting the metric for a homogeneous and isotropic universe into Einstein's field equations for a fluid with a given density and pressure. This idea of an expanding spacetime would eventually lead to the Big Bang and Steady State theories of cosmology.

  8. Alexander Friedmann - Wikipedia

    en.wikipedia.org/wiki/Alexander_Friedmann

    The classic solution of the Einstein field equations that describes a homogeneous and isotropic universe was called the Friedmann–Lemaître–Robertson–Walker metric, or FLRW, after Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker, who worked on the problem in the 1920s and 30s independently of Friedmann.

  9. f(R) gravity - Wikipedia

    en.wikipedia.org/wiki/F(R)_gravity

    Assuming a Robertson–Walker metric with scale factor () we can find the generalized Friedmann equations to be (in units where =): = + + ˙ ˙ = + + ¨ ˙, where = ˙ is the Hubble parameter, the dot is the derivative with respect to the cosmic time t, and the terms ρ m and ρ rad represent the matter and radiation densities respectively ...