Search results
Results from the WOW.Com Content Network
Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .
mlpy is a Python, open-source, machine learning library built on top of NumPy/SciPy, the GNU Scientific Library and it makes an extensive use of the Cython language. mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and ...
A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.
In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
The wake-sleep algorithm [1] is an unsupervised learning algorithm for deep generative models, especially Helmholtz Machines. [2] The algorithm is similar to the expectation-maximization algorithm , [ 3 ] and optimizes the model likelihood for observed data. [ 4 ]
PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection. Wolfram Mathematica provides functionality for unsupervised anomaly detection across multiple data types [57]