enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime? Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares? Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n 2 + 1? As of 2025, all ...

  3. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    It is known that the prime number theorem gives an accurate count of the primes within short intervals, either unconditionally [5] or based on the Riemann hypothesis, [6] but the lengths of the intervals for which this has been proven are longer than the intervals between consecutive squares, too long to prove Legendre's conjecture.

  4. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    The prime number theorem asserts that an integer m selected at random has roughly a ⁠ 1 / ln m ⁠ chance of being prime. Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠.

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.

  6. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems.

  7. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Let q = P + 1. Then q is either prime or not: If q is prime, then there is at least one more prime that is not in the list, namely, q itself. If q is not prime, then some prime factor p divides q. If this factor p were in our list, then it would also divide P (since P is the product of every number in the list). If p divides P and q, then p ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. List of philosophical problems - Wikipedia

    en.wikipedia.org/wiki/List_of_philosophical_problems

    However, '1+1=2' is true regardless of the content of the antecedent; a causal or meaningful relation is not required. The statement as a whole must be true, because 1+1=2 cannot be false. (If it could, then on a given Saturday, so could the statement). Formal logic has shown itself extremely useful in formalizing argumentation, philosophical ...