Search results
Results from the WOW.Com Content Network
In the Revelation Space series by Alastair Reynolds, interstellar commerce depends upon "lighthugger" starships which can accelerate indefinitely at 1 g, with superseded antimatter powered constant acceleration drives. The effects of relativistic travel are an important plot point in several stories, informing the psychologies and politics of ...
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola , as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame.
These equations are often used for the calculation of various scenarios of the twin paradox or Bell's spaceship paradox, or in relation to space travel using constant acceleration. b) The constant, transverse proper acceleration = by can be seen as a centripetal acceleration, [13] leading to the worldline of a body in uniform rotation [43] [44]
Different theories of dark energy suggest different values of w, with w < − 1 / 3 for cosmic acceleration (this leads to a positive value of ä in the acceleration equation above). The simplest explanation for dark energy is that it is a cosmological constant or vacuum energy; in this case w = −1.
Traveler spacetime for a constant-acceleration roundtrip. In relativity theory, proper acceleration [1] is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured.
Rindler chart, for = in equation (), plotted on a Minkowski diagram.The dashed lines are the Rindler horizons. The worldline of a body in hyperbolic motion having constant proper acceleration in the -direction as a function of proper time and rapidity can be given by [16]
The existence of absolute space contradicts the internal logic of classical mechanics since, according to the Galilean principle of relativity, none of the inertial frames can be singled out. Absolute space does not explain inertial forces since they are related to acceleration with respect to any one of the inertial frames.
Although A's acceleration timeline is delayed by an offset of ′, both A and B cover the same distance in their respective accelerations. But B's timeline contains acceleration and also being at rest in S` for ′ till A stops accelerating. Hence the extra distance covered by B during the entire course can be calculated by measuring the ...