enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integralx dy may be calculated as above from knowing the integral ∫ y dx.

  3. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that ex 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions.Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated.

  5. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    (Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Then | | = ⁡ (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.

  7. Integration using parametric derivatives - Wikipedia

    en.wikipedia.org/wiki/Integration_using...

    For example, suppose we want to find the integral ∫ 0 ∞ x 2 e − 3 x d x . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x}\,dx.} Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it.

  8. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.

  9. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    By means of integration by parts, a reduction formula can be obtained. Using the identity ⁡ = ⁡, we have for all , ⁡ = (⁡) (⁡) = ⁡ ⁡ ⁡. Integrating the second integral by parts, with: