Search results
Results from the WOW.Com Content Network
The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency. Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response. Norton's theorem was independently derived in 1926 by ...
They can be performed on a circuit involving capacitors and inductors as well, by expressing circuit elements as impedances and sources in the frequency domain. In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source ...
Mathematically, current and voltage sources can be converted to each other using Thévenin's theorem and Norton's theorem. In the case of a nonlinear device , such as a transistor , the term "output impedance" usually refers to the effect upon a small-amplitude signal, and will vary with the bias point of the transistor, that is, with the ...
Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here; the individual linked articles should be consulted. The number of equivalent circuits that a linear network can be transformed into is unbounded.
Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In this case, the pesky bugs, which are actually called weevils, infest the whole kernels and lay eggs in the wheat grains before it's been milled into flour, Quoc Le tells Delish.
parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem