Search results
Results from the WOW.Com Content Network
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
The Laplacian vector field theory is being used in research in mathematics and medicine. Math researchers study the boundary values for Laplacian vector fields and investigate an innovative approach where they assume the surface is fractal and then must utilize methods for calculating a well-defined integration over the boundary. [ 5 ]
The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field, returning a vector quantity.
More generally, if the vector is a probability distribution of the location of a random walker on the vertices of the graph, then ′ = is the probability distribution of the walker after steps. The random walk normalized Laplacian can also be called the left normalized Laplacian := + since the normalization is performed by multiplying the ...
The Bochner Laplacian is defined differently from the connection Laplacian, but the two will turn out to differ only by a sign, whenever the former is defined. Let M be a compact, oriented manifold equipped with a metric. Let E be a vector bundle over M equipped with a fiber metric and a compatible connection, . This connection gives rise to a ...
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
2.2.4 Contracted second Bianchi identity. ... The "geometer's" sign convention is used for the Hodge Laplacian here. In particular it has the opposite sign on ...
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.