Search results
Results from the WOW.Com Content Network
The sum of the ones digit, double the tens digit, and four times the hundreds digit is divisible by 8. 34,152: 4 × 1 + 5 × 2 + 2 = 16. 9: The sum of the digits must be divisible by 9. [2] [4] [5] 2,880: 2 + 8 + 8 + 0 = 18: 1 + 8 = 9. Subtracting 8 times the last digit from the rest gives a multiple of 9. (Works because 81 is divisible by 9)
Later, on a calendar yet to come (we'll get to it), it was decreed that years divisible by 100 not follow the four-year leap day rule un ... 1800 and 1900, but 2000 had one. In the next 500 years ...
That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is).
Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years, but the years 1600 and 2000 are. [8] 1800 calendar, showing that February had only 28 days
In the Gregorian calendar, the standard civil calendar used in most of the world, February 29 is added in each year that is an integer multiple of four, unless it is evenly divisible by 100 but not by 400. For example, 1900 was not a leap year, but 2000 was.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
There is a leap year in every year whose number is divisible by 4, but not if the year number is divisible by 100, unless it is also divisible by 400. So although the year 2000 was a leap year, the years 1700, 1800, and 1900 were common years.
The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a ).