enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Universal instantiation - Wikipedia

    en.wikipedia.org/wiki/Universal_instantiation

    In predicate logic, universal instantiation [1] [2] [3] (UI; also called universal specification or universal elimination, [citation needed] and sometimes confused with dictum de omni) [citation needed] is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class.

  3. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    Logical symbols are a set of characters that vary by author, but usually include the following: [10] Quantifier symbols: ∀ for universal quantification, and ∃ for existential quantification; Logical connectives: ∧ for conjunction, ∨ for disjunction, → for implication, ↔ for biconditional, ¬ for negation.

  4. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols). ⊃ {\displaystyle \supset } may mean the same as ⇒ {\displaystyle \Rightarrow } (the symbol may also mean superset ).

  5. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    Therefore (Mathematical symbol for "therefore" is ), if it rains today, we will go on a canoe trip tomorrow". To make use of the rules of inference in the above table we let p {\displaystyle p} be the proposition "If it rains today", q {\displaystyle q} be "We will not go on a canoe today" and let r {\displaystyle r} be "We will go on a canoe ...

  6. Instantiation - Wikipedia

    en.wikipedia.org/wiki/Instantiation

    The instantiation principle, the idea that in order for a property to exist, it must be had by some object or substance; the instance being a specific object rather than the idea of it; Universal instantiation; An instance (predicate logic), a statement produced by applying universal instantiation to a universal statement

  7. Universal quantification - Wikipedia

    en.wikipedia.org/wiki/Universal_quantification

    In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.

  8. List of typographical symbols and punctuation marks

    en.wikipedia.org/wiki/List_of_typographical...

    The second is a link to the article that details that symbol, using its Unicode standard name or common alias. (Holding the mouse pointer on the hyperlink will pop up a summary of the symbol's function.); The third gives symbols listed elsewhere in the table that are similar to it in meaning or appearance, or that may be confused with it;

  9. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or "(∃x)" [1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.